Multivariate Time Series Data Clustering Method Based on Dynamic Time Warping and Affinity Propagation
نویسندگان
چکیده
منابع مشابه
Correlation based dynamic time warping of multivariate time series
0957-4174/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2012.05.012 ⇑ Corresponding author. Tel.: +36 88 624209. E-mail address: [email protected] (J. Ab In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for comparison of time series data where extensive a priori knowledge is not available. However, it is often expe...
متن کاملBattery Grouping with Time Series Clustering Based on Affinity Propagation
Battery grouping is a technology widely used to improve the performance of battery packs. In this paper, we propose a time series clustering based battery grouping method. The proposed method utilizes the whole battery charge/discharge sequence for battery grouping. The time sequences are first denoised with a wavelet denoising technique. The similarity matrix is then computed with the dynamic ...
متن کاملMultivariate time series classification with parametric derivative dynamic time warping
Multivariate time series (MTS) data are widely used in a very broad range of fields, including medicine, finance, multimedia and engineering. In this paper a new approach for MTS classification, using a parametric derivative dynamic time warping distance, is proposed. Our approach combines two distances: the DTW distance between MTS and the DTW distance between derivatives of MTS. The new dista...
متن کاملTime Warping Techniques in Clustering Time Series
The problem of obtaining an accurate forecast is becoming more and more significant as the production possibilities and technologies evolve. The accuracy of a forecast mainly depends on the dataset used for forecasting as well as on the methods employed. This study is devoted to the time series analysis. A set of known methods and techniques are used for analysing the time series; one of them i...
متن کاملClustering of Multivariate Time-Series Data
A new methodology for clustering multivariate time-series data is proposed. The methodology is based on calculation of the degree of similarity between multivariate time-series datasets using two similarity factors. One similarity factor is based on principal component analysis and the angles between the principal component subspaces while the other is based on the Mahalanobis distance between ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Wireless Communications and Mobile Computing
سال: 2021
ISSN: 1530-8677,1530-8669
DOI: 10.1155/2021/9915315